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Abstract

We exploit new methods involving affine groups to determine the
complete geometric structure of perspective sets in PG(2,q). Using
this we then, in a few pages, give a complete characterization of those
blocking sets in PG(2,q) that contain at least two Rédei lines. Our
characterization is analogous to, but slightly more detailed than, the
characterization obtained by Sherman in the sequence [13, 14]. Finally,
we use our results to sharpen known results (see [5]) by obtaining a
detailed classification of transversal designs embedded in planes.

1. Introduction

A blocking set in a projective plane is a set of points not containing a line
that intersects every line. If Y is a blocking set in PG(2, q) of size q + λ,
then at most λ points of Y lie on a line. If a set of λ collinear points exists
in Y then Y is said to be a Rédei blocking set and every line meeting Y in λ
points is called a Rédei line of Y . This terminology arose as follows. Let Y
be a Rédei blocking set and L a Rédei line for Y. Then every line through two
distinct points x, y of Y \L intersects L in a point of Y. Therefore, as was first
pointed out in [6] and going back also to unpublished work of T.G. Ostrom,
Y \L can be viewed as the graph of a function in the affine plane PG(2, q)\L
and Y ∩ L is the set of directions determined by this graph. L.Rédei in
[12] obtained powerful results on the number of directions determined by the
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graph of a function in the affine plane AG(2, q) and the techniques of Rédei
can be used to obtain results on arbitrary blocking sets in PG(2, q). The work
of Rédei and its relevance to blocking sets was first pointed out in [6]: the
results in that paper were subsequently extended by H.W.Lenstra Jr [11]. For
additional references, see [3],[4],[2],[1].

In [13, 14], B.F.Sherman found a canonical representation for minimal block-
ing sets in PG(2, q) with al least two Rédei lines. More precisely he proved
the following.

Theorem 1.1 A point set Y in PG(2, q) of size q + λ is a minimal blocking
set with at least two Rédei lines if, and only if, there exist an additive subgroup
W, a multiplicative subgroup M of GF (q) (each element of which leaves W
invariant), and a coordinatisation of PG(2, q) such that

Y = {(x,−1, 0) : x ∈ X} ∪ {(x, 0, 1) : x ∈ X}∪

{(1, 0, 0)} ∪ {(w, m, 1) : m ∈ M, w ∈ W},
where X = GF (q) \ {x ∈ GF (q) : x = mv + w, m ∈ M, w ∈ W}, v being
some element in GF (q) not in M ∪W. The two sets of points characterized
by X, along with {(1, 0, 0)}, are the sections of Y in the two λ-secants, where
λ = |X|+ 1 = q − |M ||W |+ 1.

In this paper we use quite different techniques, related to Dickson’s classifica-
tion of the subgroups of the affine group Σ on the line AG(1, q). We are able
to show that every blocking set with at least two Rédei lines can be described
by a subgroup of Σ, and conversely. In this way we obtain a new geometric
description of such blocking sets and we give a synthetic proof of Sherman’s
result. For related ideas we also refer to [10].

2. Preliminaries

Let q = pr be a prime power and PG(2, q) the projective plane over the Galois
field GF (q). If L1, L2 are distinct lines in PG(2, q) and x is a point not in
L1∪L2 we denote by π1

x and π2
x the perspectivities with center x mapping L1

onto L2 and L2 onto L1, respectively. Put L1 ∩ L2 = c.

Consider two perspective point sets X1 ⊆ L1 \ c, X2 ⊆ L2 \ c and denote by
U the set of all points which are centres of a perspectivity mapping X1 onto
X2. That is,

U = U(X1, X2) = {x ∈ PG(2, q) : π1
x(X1) = X2}

= {x ∈ PG(2, q) : π2
x(X2) = X1}.
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Note that, if x, y are points in U, then π1
xπ

2
y induces an affinity π1

xy on the
affine line L1 \c and π2

xπ
1
y an affinity π2

xy on the affine line L2 \c. The affinities
π1

xy and π2
xy preserve the sets X1 and X2, respectively. On the other hand, let

x be in U, let ϕ1 (resp. ϕ2) be an affinity of L1 \ c (resp. L2 \ c) preserving
X1 (resp. X2). Assume |U | ≥ 2. Then there exists a unique point y ∈ U such
that ϕ1 = π1

xy (resp. ϕ2 = π2
xy). This can be shown using the fact that a

projectivity fixing three points on a projective line is necessarily the identity
on that line.

Fix any point x ∈ U. It then follows that

Gi = {πi
xy : y ∈ U} , i = 1, 2,

are isomorphic groups; more precisely,

G2 = π2
xG1π

1
x.

Also, for i = 1, 2, Gi is the full group of affinities of Li \ c preserving the set
Xi. Furthermore,

- Xi is a union of orbits of the group Gi on Li \ c, i = 1, 2;

- |U | = |G1| = |G2|.
We now recall that every subgroup G of the full affine group Σ has size tph.
This can be seen from the fact that the full affine group has order q(q − 1).
Some of these subgroups have the following structure:

G = G(A, B) = {g : g(y) = ay + b , a ∈ A , b ∈ B} (1)

where

(i) B is a subspace of GF (q) of dimension h1 considered as a vector space
over a subfield GF (q1) of GF (q) with q1 = pd and d|r. This implies that
B is an additive subgroup of GF (q) of order ph with h = dh1;

(ii) A is a multiplicative subgroup of GF (q1) of order t, where t|(pd− 1). In
this way, B is invariant under A, i.e. AB = B.

We remark that, for every two integers t|(pd− 1) and d|gcd(r, h), there exists
in Σ a subgroup of type G = G(A,B) of order tph, where B and A are additive
and multiplicative subgroups of GF (q) of order ph and t, respectively.

It is not difficult to verify that a group G of type (1) has one orbit of length
ph on AG(1, q), namely B, and that G acts regularly on the remaining orbits,
say O1,O2,.. .,Om, where

m =
q − ph

tph
=

pr−h − 1

t
.
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Then
Oi = {ayi + b : a ∈ A , b ∈ B}

where yi is a suitable element of GF (q) \B, i = 1, 2, . . . , m, and

|Oi| = |G| = tph.

We point out the following.

(iii) The translations contained in G form a subgroup T of order ph, namely

T = {s : s(y) = y + b , b ∈ B}.

(iv) Every element in G \ T is a dilatation, i.e. has a unique fixed point.

(v) If ϕ ∈ G\T, then the unique fixed point of ϕ on AG(1, q) is an element
of B.

(vi) The stabilizer Gb in G of any point b ∈ B is a subgroup of dilatations
of B and contains exactly t elements. More precisely,

Gb = {g : g(y) = ay + (b− ab) , a ∈ A}.

Finally we recall the following classification of the subgroups of Σ (Chapter
XII of [4]).

Result 2.1 Let Γ be a subgroup of Σ. If Γ is not of type (1), then it is
conjugate to a subgroup of type (1) under a suitable non-trivial translation.

Thus result 2.1 implies that every element in a subgroup G of Γ is of the form

x → ax− u(a− 1) + b

for a in A, b in B and u a fixed element of GF (q). Using the change of
coordinates given by x′ = x + u we may now assume that G is exactly as in
(1).

We fix in PG(2, q) a coordinate frame as follows. The lines L1, L2 have
equations x2 = 0, x3 = 0, respectively. Set x = (0,−1, 1). Put O1 = (0, 0, 1),
π1

x(O1) = (0, 1, 0), U1 = (1, 0, 1) and π1
x(U1) = (1, 1, 0). Then the orbits of G1

on the line L1 \ c are the following:

B1 = {(b, 0, 1) : b ∈ B} and O1
i = {(aci + b, 0, 1) : a ∈ A , b ∈ B},
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where ci is a suitable element of GF (q) \B, i = 1, 2, . . . , m.

Since π1
x(x1, 0, 1) = (x1, 1, 0), for x1 ∈ GF (q), we obtain the orbits of G2 on

L2 \ c, namely

B2 = {(b, 1, 0) : b ∈ B} and O2
i = {(aci + b, 1, 0) : a ∈ A , b ∈ B}.

Then, since |U | = |G1| = |G2|, it is easy to check that

U = {(b,−a, 1) : a ∈ A , b ∈ B}.

Our discussion may be summarized as follows.

Result 2.2 Let X1 ⊆ L1\c , X2 ⊆ L2\c be two perspective sets in PG(2, q).
Then, using a suitable projective frame in PG(2, q), there exist an additive
subgroup B of GF (q), as in (i), and a multiplicative subgroup A of GF (q),
as in (ii), such that

G = G(A,B) ' G1 ' G2.

Gi is the full group of affinities of Li \ c preserving the set Xi, i = 1, 2.
Moreover, Xi is a union of orbits of Gi on Li \ c, i = 1, 2, and

|U | = |G| = tph.

In the sequel we denote by Bi the orbit of Gi on Li \ c corresponding to B
and by Oi

1, O
i
2, . . . , O

i
m the remaining orbits, for i = 1, 2.

We remark that, with the notation of Result 2.2, if x, y ∈ U, then π1
xy (resp.

π2
xy) is a translation of L1 \ c (resp. L2 \ c) iff x, y, c are collinear and is a

dilatation iff x, y, c are not collinear. Moreover, if x, y, c are collinear and
we take a translation τ ∈ G1, τ 6= π1

xy, then, since τ has no fixed points on
L1 \ c, the unique point z such that τ = π1

xz must be collinear with x and
c. As G1 contains exactly ph translations, the line xy meets U in exactly ph

points. It follows that, if a line M through c intersects U, then |U ∩M | = ph.
On the other hand, if M misses c and |M ∩ U | ≥ 2, then from (vi) we have
|U ∩M | = t. We also observe that, if two points x, y ∈ U are on a line M not
through c, then π1

xy ∈ G1 and π2
xy ∈ G2 are dilatations, so their fixed points

are on B1 and B2, respectively, and such points are collinear with both x and
y. We emphasize this fact as follows.

Result 2.3 If a line M not through c meets U in at least two points, then
M intersects both B1 and B2.

Using the notation of 2.2 we can have, using 2.1 the following.
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Result 2.4 Exactly one of the following cases must occur:

(j) Both A and B are trivial. Then U consists of a singleton.

(jj) A is trivial and B is not trivial. Then U is a set of ph points all collinear
with the point c.

(jjj) B is trivial and A is not trivial. Then U is a set of t points on a line
not through c.

(jv) A and B are the multiplicative and the additive group, respectively, of
a subfield GF (ph) of GF (q). Then

U ∪B1 ∪B2 ∪ {c} = PG(2, ph).

(v) None of the previous cases occur. Then U is a set of size tph and of
type [0, 1, t, ph], i.e. 0, 1, t, ph are the only intersection numbers of U
with respect to the lines in PG(2, q). In addition, using the fact that
|U | = tph,

(v,1) there are exactly t lines intersecting U in exactly ph points and
they are all concurrent at the common point c of L1 and L2,

(v,2) each line intersecting U in exactly t points meets both B1 and B2.

3. Examples of blocking sets with two Rédei lines

Using the previous notation, let G = G(A,B) be a subgroup of Σ of order
tph, t = |A|, ph = |B|, with G acting on the affine line L1 \ c. Denote by
B1 the orbit of G on L1 \ c corresponding to B and by O1

1, O
1
2, . . . , O

1
m the

remaining orbits. Fix a point x 6∈ L1 ∪ L2 and consider on L2 the point sets
B2, O2

1, . . . , O
2
m defined by

π1
x(B

1) = B2 ; π1
x(O

1
i ) = O2

i , i = 1, 2, . . . , m.

Under this assumption, we also have

π2
x(B

2) = B1 ; π2
x(O

2
i ) = O1

i , i = 1, 2, . . . , m.

Recall that, for every ϕ ∈ G, there exists a unique point y 6∈ L1 ∪ L2 such
that ϕ = π1

xy; so the set

U = Ux(G) = {y ∈ PG(2, q) : π1
xy ∈ G}
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contains exactly tph points and

G ' G1 = {π1
xy : y ∈ U} ' G2 = {π2

xy : y ∈ U}.

Of course, for i = 1, 2, the point sets Bi, Oi
1, . . . , O

i
m are the orbits of Gi on

Li \ c.

Next we consider two cases.

Example 3.1 Choose an arbitrary orbit O1
i of G on L1 and the corresponding

one O2
i on L2. Define

X1 = B1 ∪O1
1 ∪O1

2 ∪ . . . ∪O1
i−1 ∪O1

i+1 ∪ . . . ∪O1
m,

X2 = B2 ∪O2
1 ∪O2

2 ∪ . . . ∪O2
i−1 ∪O2

i+1 ∪ . . . ∪O2
m

and put

Y = U ∪X1 ∪X2 ∪ {c}.
Then, using Result 2.3, it is easy to verify that Y is a blocking set of size
q + λ, with

λ = q − tph + 1,

and that L1, L2 are two Rédei lines of Y.

We point out that the five possibilities of Result 2.4 yield the following cases,
respectively:

(j) G is trivial, |U | = 1 and λ = q.

(jj) A is trivial and B is not trivial. Then all orbits of G have length ph,
|U | = ph and λ = q − ph + 1. Moreover, all points of U are on a line
through the point c. So Y is contained in three concurrent lines.

(jjj) B is trivial and A is not trivial. Then G has one fixed point on both L1

and L2 (namely the unique element of B1 and B2, respectively) and m
orbits each of size t. It follows that |U | = t and λ = q− t+1. Moreover,
all points of U are on a line not through the point c. So Y is contained
in three non-concurrent lines. We remark that in the case q odd and
t = q−1

2
we obtain the so-called projective triangle ([9],[7],[3]).

(jv) A and B are the multiplicative and the additive group, respectively, of
a subfield GF (ph) of GF (q). In this case λ = q − (ph − 1)ph + 1 and
U = PG(2, ph)\(L1∪L2). We remark that if q is a square and ph =

√
q,

then Y is a Baer subplane of PG(2, q).
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(v) If none of the previous cases occurs, then U is a set of size tph and of
type [0, 1, t, ph]. In fact, the number of ph-secants to U is exactly t, all of
these pass through the point c and every secant not through c contains
t points of U.

Example 3.2 Assume that neither A nor B is trivial. Define

X1 = O1
1 ∪O1

2 ∪ . . . ∪O1
m,

X2 = O2
1 ∪O2

2 ∪ . . . ∪O2
m.

Moreover, consider a subset X of U of size ph consisting of ph points collinear
with c. If we put

Y = X ∪X1 ∪X2 ∪ {c},
then it is easy to verify that Y is a blocking set of size q + λ, with

λ = q − ph + 1,

and L1, L2 are two Rédei lines of Y.

We remark that, if we consider the above construction in the case that A is
trivial, we obtain (jj) of example 3.1.

4. A characterization

Let Y be a Rédei blocking set of size q + λ in PG(2, q), with q = pr, and
assume that L1, L2 are two Rédei lines of Y . If we put

X = Y \ (L1 ∪ L2) ; Xi = (Y ∩ Li) \ {c} , i = 1, 2,

then Y is partitioned into four disjoint sets, namely

Y = X ∪X1 ∪X2 ∪ {c}

with
|X| = q − (λ− 1) , |X1| = |X2| = λ− 1.

We have that π1
x(X1) = X2 and π2

x(X2) = X1, for every x ∈ X. So the point
sets X1 , X2 are perspective and, if

U = {x ∈ PG(2, q) : π1
x(X1) = X2} = {x ∈ PG(2, q) : π2

x(X2) = X1},

then
X ⊆ U.
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Moreover, by result 2.2, we can choose a suitable coordinate system in such
a way there exists a group G = G(A,B) such that

G ' G1 = {π1
xy : y ∈ U} ' G2 = {π2

xy : y ∈ U},
where x is a fixed point in U. We have that |B| = ph and |U | = tph using the
notation of previous sections.

Now we consider two cases.

Case 1. Assume that B1 is contained in X1 and, as a consequence, that
B2 ⊆ X2. Because X1 is a union of G1−orbits, then λ is at most 1 + q− tph,
since λ < q. The number of points of Y off L1 is then at most q − tph + |X|.
Moreover, this number must equal q. It follows that |X| = tph. Since X ⊆ U
and |U | = tph, we have X = U. We conclude that Y is a blocking set of the
type described in Example 3.1 of Sect.3.

Case 2. Assume that B1 ⊆ L1\X1 and, as a consequence, that B2 ⊆ L2\X2.
Then λ is at most 1+ q−ph, since λ < q. So |X| ≥ ph. But, as in paper, since
the join of any two points of X meets c, we have |X| ≤ ph. Thus |X| = ph.
Now we point out that, since L1,L2 are Rédei lines of Y, the line joining two
distinct points x, y of X meets X1 ∪X2 ∪ {c}. On the other hand, by Result
2.3, a line through two points of X not collinear with c must intersect both
B1 and B2. Now B1 6⊆ X1, B2 6⊆ X2. It follows that x, y, c are collinear and,
as a consequence, that X consists of ph points of U collinear with c.
We conclude that Y is a blocking set of the type described in Example 3.2 of
Sect.3.

Finally, we can state the following version of Sherman’s result.

Theorem 4.1 Let Y be a blocking set in PG(2, q) having at least two Rédei
lines. Then, with respect to a suitable projective coordinate system, Y is one
of the two types described in Sect.3.

By Theorem 4.1 and looking at the list of examples in Sect.3, all blocking
sets of PG(2, q) containing at least three Rédei lines can be easily classified.

Theorem 4.2 Let Y be a blocking set in PG(2, q) of size q + λ having at
least three Rédei lines. Then one of the following possibilities can occur:

(1) q is odd, λ = q+3
2

and Y is a projective triangle. In this case Y is
contained in the union of three non concurrent Rédei lines.

(2) q = pd+h, t = pd − 1, λ = ph + 1 and Y is the set U ∪B1 ∪B2 ∪ {c}. In
this case every line through c, which meets Y in at least two points, is
a Rédei line.
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5. Transversal designs of index 1 and their embeddings

Recall [5] that a transversal design of order n, block size k and index λ,
denoted TDλ(k, n), is a triple (V, S, B) where

(1) V is a set of kn elements;

(2) S is a partition of V into k classes, called groups, each of size n;

(3) B is a collection of k−subsets of V, called blocks ;

(4) every unordered pair of elements from V is either contained in exactly
one group, or is contained in exactly λ blocks, but not both.

When λ = 1 one writes simply TD(k, n). These transversal designs have a
long history because, for example, a TD(k, n) is equivalent to a set of k − 2
mutually orthogonal latin squares of side n and also to an orthogonal array
of strength two having n2 columns, k rows and n symbols. A TD(k, n) is said
to be embedded in PG(2, q) if there exist k lines in PG(2, q) each containing a
group of TD(k, n). Here we provide a complete answer to the question: which
finite systems TD(k, n) are embedded in PG(2, q)? This answer sharpens the
result in [5] for finite fields. Actually, taking into account the Theorem 4.1 of
[5] and the two cases examined in its proof, it is not so difficult to prove the
following structure theorem for a TD(k, n) embedded in PG(2, q).

Theorem 5.1 Let Ω be a TD(k, n) with k and n at least 3 which is embedded
in PG(2, q). Then coordinates may be chosen such that the points of Ω and
the lines of Ω are subsets of the points and lines of one of the following
examples:

(a) An example modelled on case (jjj) of Result 2.4. The point set of the
design is U ∪O1 ∪O2, where

O1 = {(a, 0, 1) : a ∈ A} , O2 = {(a, 1, 0) : a ∈ A} ,

and each line contains exactly t = |A| points. In the q odd case, if t
divides q−1

2
, then Ω is embedded in a projective triangle.

(b) A subplane as in case (jv) of Result 2.4. The points of the design are
all points of the subplane apart from a single point c which is removed.
The groups are points of the subplane on lines through c.
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(c) An example modelled on case (v) of Result 2.4. The point set of the
design is U ∪B1 ∪B2 and each group contains exactly |B| = ph points
lying on a line through c. This example also includes the case when the
TD has just 3 lines as in case (jj) of Result 2.4.

FINAL REMARK Many of our results can be extended to higher dimen-
sions. We will report on this elsewhere.

ACKNOWLEDGMENTS The first author wishes to thank the National
Science and Engineering Research Council of Canada (NSERC) for its sup-
port. The second and the third author wish to thank for their supports the
research group GNSAGA of Italian Istituto Nazionale di Alta Matematica
and the Dipartimento di Matematica of the Seconda Università degli Studi di
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