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ABSTRACT. A dual blocking set is a set of points which meets every blocking set but  contains no 
line. We establish a lower bound for the cardinality of such a set, and characterize sets meeting the 
bound, in projective and affine planes. 

A blocking set for a family ~- of sets is a set which meets every member o f ~  but 
contains none. Blocking sets have been studied intensively, especially in the 
case where Y is the set of lines of a projective or affine plane (see, for example, 
[1]). Two of the motivating questions are: What  is the minimum size of 
a blocking set? and What  is the structure of blocking sets of minimal size? 

A dual blocking set for ~ is a set which meets every blocking set for ~ but 
contains no member  of ~ .  In the course of showing that a projective or affine 
plane is, in general, determined by its family of blocking sets, the first two 
authors showed in [2] that, for such planes, the smallest sets meeting every 
blocking set are the lines: in other words, a dual blocking set has larger 
cardinality than a line. The question 'How much larger?' was left open. We 
propose to answer that question here. 

We require one further definition in order to state our results. A line oval in 
a projective plane of order n is a set of n + 2 lines, no three concurrent. A line 
oval in an affine plane of order n is a line oval in the corresponding projective 
plane, one of whose lines is the line at infinity: in other words, a set of n + 1 
lines, no three concurrent and no two parallel. It is well known that line ovals 
exist only in planes of even order, and that any Desarguesian plane of even 
order contains them. 

Projective planes of order 2, and affine planes of order 2 or 3, contain no 
blocking sets; so we exchrde these. 

T H E O R E M  1. Let S be a dual blocking set in a projective plane of  order n >>. 3. 

Then IS[ ~< ½n(n + 1). Equality holds if and only if  either 

(a) n = 3 and S is the complement of  the union of  two lines; or 
(b) S = U ~ \ L ,  where £~ is a line oval and L ~ .  

T H E O R E M  2. Let S be a dual blocking set in an affine plane of order n >~ 4. 
Then I SI ~< ½n(n - 1). Equality holds if  and only if S = U ~ \ L ,  where 5~ is a line 
oval and L ~ 5a. 

Before beginning the proof, we note one general result: 

P R O P O S I T I O N .  I f  S is a dual blocking set for ~ ,  and is minimal (with respect 
to inclusion) subject to this, then there is a member of  ~ disjoint from S. 

Proof If not, then S meets every member  of ~ and every ~ -b lock ing  set, 
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and hence meets every set meeting every member  of o ~ .  Thus, the complement  
of S is disjoint from some member  of o~. 

P R O O F  O F  T H E O R E M  1. Clearly we may assume that  S is minimal with 
respect to inclusion, among  dual blocking sets. Then there is a line L satisfying 
S c~ L = Q ,  by the proposition. We distinguish two cases: 

Case I. S is disjoint f rom exactly one line L. Let x be a point  of  L. If, for each 
line M ~ L incident with x, there is a point  y ~ x on M but not  in S, then the 
complement  of S u {x} is a blocking set disjoint from S; a contradiction. 
Hence, for every point  x e L, there is a line M(x)  on x with [M(x) c~ SI = n. Then 

i 

S 
[--x~L 

~ > ( n + l ) n -  ~ [M(x) n M ( y ) ~ S [  
x, y~L 

x # y  

= ~n  + 1)n. 

Suppose that  equality holds. The tightness of the first inequality shows that  

The tightness of the second inequality shows that  any point  of S lies on just two 
lines M ( x ) ( x s L ) ,  so that  {L} u {M(x):xeL} is a line oval, and the second 
alternative of the theorem holds. 

Conversely, let ~ be a line oval, and L e  ~ .  For  x ~ L, let M(x)  be the line of 
~ ,  different from L, contaning x. If  B is contained in the complement  of 
( U L f ) \ L ,  then either L ~ B, or there is a point  x E L \ B ;  in the latter case, 
B c~ M(x)  = @. In  either case, B is not  a blocking set. Thus ( U £ f ) \ L  is a dual 
blocking set. Clearly it is minimal. 

Case 2. There are two lines L, M disjoint from S. For  any point  x q~ L u M, 
the set L u M ~ {x} contains a blocking set - if N is a line on x meeting L and 
M in p and q respectively, where p ¢ q, then L u M u {x} \ {p ,q}  is a blocking 
set. So S contains each such x. Thus S is the complement  of L ~ M, and 

IS[ = n(n - 1) >/½n(n + 1). 

since n t> 3; equality holds only if n = 3. 

Conversely, the complement  of the union of two lines is a dual blocking set, 
since no blocking set is contained in the union of two lines; and it is minimal 
with respect to inclusion, by the above argument.  

P R O O F  O F  T H E O R E M  2. The argument  is similar to that  for Theorem 1, 



DUAL B L O C K I N G  SETS 205 

though  more  elaborate. Let S be a dual blocking set, minimal under inclusion. 

By the proposit ion,  there is a line disjoint from S. 
Case 1. S is disjoint from exactly one line L. As in Theorem 1, we deduce 

that  for each x e L ,  there exists a line M(x) ~ L on x such that M(x)\{x} ~_ S. 

This yields 

ISI/> ~ I M ( x ) \ { x } l -  ~ IM(x )nM(y ) l  
x ~ L  x, y L  

x # y  

= ½n(n - 1). 

Equali ty implies both  that  

S = U M(x)\L,  
x E L  

and that  M(x) n M(y)  ¢ © but M(x) c~ M(y)  ca M(z)) = Q for all distinct 

x, y, z 6 L ,  so that  f = {L} w {M(x) :x~L}  is a line oval. 
Case 2. S is disjoint f rom more  than one line, say L~ . . . . .  Lk(k >~ 2). 
Subcase A. Three of  the lines L~, say L 1, L z, L3, a r e  not  all parallel. Then 

there is a blocking set contained in L 1 ~ L 2 u L3 ,  and hence disjoint f rom S; 

a contradict ion.  ( I fL  1 II L2, and L i ~ L 3 = {xi} for i = 1, 2, then L 1 w L 2 kA L 3 \  

{xl,  x2} is a blocking set. If  no two of  the three lines are parallel, and n ~> 
5, choose x~ lying on L~ but neither of  the other  two lines for i = 1, 2, 3, such 
that  the line x~xj is not  parallel to Lk whenever {i,j,k} = {1,2,3}; then 
L~ u L 2 u L 3 \ { x l , x 2 , x 3 }  is a blocking set. In the case n = 4, the plane is 
isomorphic  to AG(2, 4), and the claim may  be verified directly.) 

Subcase B. Lt  . . . . .  L k are all parallel. Choose a point  x not  in S and lying on 
no line Li. (This is possible since S contains none of  the remaining lines parallel 
to L~.) Then, if L is a line th rough  x not  parallel to L1, the complement  of 
S w ( L ~  ~ = 1  L~) is a blocking set; a contradiction. 

Subcase C. k = 2 and L~, L 2 intersect. Let Ut . . . . .  U,_ ~ be the further lines 
parallel to L 1, and V1, . . . ,  V,_ 1 those parallel to L 2. Let x (resp. y) be the 
number  of lines U~ (resp. V~) which do not contain n - 1 points of S. 

L E M M A .  If[Utc~Sl <~ n -  2, then I U i ~ S  I >t y for all i ~ t. 
Proof Letp  be the point  on Ut and L 2. For  each j such  that [Vj c~ S[ ~< n - 2, 

let q~ be the point  on Vj and L1, and rj the intersection ofpqj and Ui. We claim 
that rj~S. Indeed, if rj¢S, then the complement  of S w {p, qj} would be 
a blocking set. Since the points rj are distinct, I U~ c~ S[/> y. 

Wi thout  loss of  generality, we m a y  suppose that y ~> x. If  x = 1 then 
JUiceS [ = n - l f o r , s a y , 1  ~ < i ~ < n - 2 ,  and U,_  l c a S ¢ ~ ; s o l S J > 1 ( n - 1 )  
(n - 2) + 1 > ½n(n - 1). 
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Fig. 1. 

So we m a y  s u p p o s e  t ha t  x ~> 2. N o w  the l e m m a  shows  t ha t  [ U~ ~ S[ ~> y for  

all  i, a n d  thus  

(1) IS l />  (n - 1 - x ) ( n  - 1) 4- x y .  

O n  the o t h e r  hand ,  c lear ly  

(2) ISl >~ (n - 1) 2 - x y ,  

since the  l ines U~, V~ c o n t a i n i n g  a p o i n t  n o t  in S ~ L 1 ~ L= sat isfy I U~ m S[ < 

n - 1 a n d  [Vj < S[ < n - 1; a n d  there fore  

(3) IS[/> ½((n - 1 - x ) ( n  - 1) + (n - 1) 2) 

= ½(n - 1)(2n - 2 - x). 

Hence ,  i f x  ~< n - 3, t hen  ISt >~ ~ n  - 1)(n + 1) > ½n(n  - 1). O t h e r w i s e  y / >  x 

>t n - 2, a n d  so, b y  (1), we have  ISI > / n  - 1 + (n - 2) 2 > (~), p r o v i n g  the 

t heo rem.  

R E M A R K .  E q u a t i o n s  (1)-(3) i m p l y  tha t ,  in Case  2, ISI >~ c n  ~ for  s o m e  c / >  ½. 

A s l ight ly  be t t e r  b o u n d  is o b t a i n e d  as fol lows.  F r o m  the p r o o f  of  the  l e m m a ,  if 

x , y ~ >  1, t hen  

ISI >t (n - 2)x 

a n d  

a n d  so 

The re fo re  

IS I ~ > ( n - 2 ) y  

ISI 2/> (n - 2 )2xy  >~ (n - 2)2((n - 1) a - IS[). 

[S[ ~ ½ ( ~  --  1)n 2. 
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